How can eye-tracking data be used to understand cognitive processes when comparing data sets with box plots

Abstract

Tasks in which learners are asked to compare two data sets using box plots and decide which distribution contains more observations above a given threshold have already been investigated in research. There are indications that these tasks are solved schema-based and that different (correct and erroneous) schemas are used depending on the arrangement of the quartiles around the threshold. Erroneous schemas can cause systematic errors and are often based on typical misconceptions. For example, if learners did not complete the conceptual change and assume that in box plots – like in most other statistical representations (e.g., bar or circle diagrams) - more (box) area also represents more observations, they decide the task according to which box plot shows more box area above the threshold. However, this can lead to incorrect answers, as the box area does not represent frequency but the range of the middle half of the data (interquartile range) and thus a measure of variability. So far, these schema-based reasoning processes have mainly been investigated via differences in solution rates of congruent and incongruent items. The present study investigates whether eye-tracking data can help to better understand which information is processed in the different schemas. Our research interest is based on hypotheses specifying which box plot components are significantly involved in the different schemas. We assume that the gaze patterns of learners using different schemas differ both regarding the number and duration of fixations on the relevant box plot components (areas of interest) and in terms of the number of transitions between them. We asked N = 14 participants to solve congruent and incongruent items and simultaneously collected eye movement data. In the analysis, we first used the solution rates to assign the schemas most likely used. Subsequently, the eye-tracking data were analyzed regarding differences in line with our hypotheses. We found hypothesis-compliant effects in all schemas regarding the number of fixations and transitions, but not regarding fixation duration. These results not only validate the schemas identified in previous studies, but also indicate that the schemas differ primarily in terms of which quartile is focused.

Publication
In Frontiers in Education
Frank Reinhold
Frank Reinhold
Professor of Mathematics Education

I am currently working as a professor of mathematics education at University of Education Freiburg.